Possible AP MC for Test

9. If $\mathrm{f}(\mathrm{x})=\ln \left(\mathrm{x}+4+\mathrm{e}^{-3 \mathrm{x}}\right)$, then $f^{\prime}(0)$ is

$\begin{array}{lllll}\text { A) A) } \frac{-2}{5} & \text { B) } \frac{2}{5} & \text { C) } \frac{1}{4} & \text { D) } \frac{8}{2} & \text { E) nonexistent }\end{array}$

1. If $\mathrm{y}=\sin (3 \mathrm{x})$, then $\frac{d y}{d x}=$
A) $-3 \cos (3 x)$
B) $-\cos (3 x)$
C) $\left.\frac{-1}{3} \cos 3 x \quad D\right) \cos (3 x)$
E) $3 \cos (3 x)$
2. If $f(x)=(\ln x)^{2}$ then, $f^{\prime \prime}(\sqrt{e})=$
A) $\frac{1}{e}$
B) $\frac{2}{e}$
C) $\frac{1}{2 \sqrt{e}}$
D) $\frac{1}{\sqrt{e}}$
E) $\frac{2}{\sqrt{e}}$
3. Let h be a differentiable function, and let f be the function defined by $f(x)=h\left(x^{2}-3\right)$. Which of the following is equal to $f^{\prime}(2)$?
A) $h^{\prime}(1)$
B) $4 h^{\prime}(1)$
C) $4 h^{\prime}(2)$
D) $h^{\prime}(4)$
E) $4 h^{\prime}(4)$

x	$\mathrm{f}(\mathrm{x})$	$\mathrm{g}(\mathrm{x})$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	-5	1	3	0
0	-2	0	1	1
1	0	-3	0	.5
2	5	-1	5	2

The table above gives the values of the differentiable functions f and g and of their derivatives f^{\prime} and g^{\prime}, at selected values of x. If $h(x)=f(g(x))$, what is the slope of the graph of h at $x=2$?
A) -10
B) -6
C) 5
D) 6
E) 10

X	$\mathrm{f}(\mathrm{x})$	$f^{\prime}(x)$	$\mathrm{g}(\mathrm{x})$	$g^{\prime}(x)$
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

79. The table above gives values of $\mathrm{f}(\mathrm{x}), f^{\prime}(x), \mathrm{g}(\mathrm{x})$, and $g^{\prime}(x)$ at selected values of x . If $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$, then $h^{\prime}(\mathrm{l})=$
A) 5
B) 6
C) 9
D) 10 E$) 12$

80. The function f is defined on the closed interval $[-5,4]$. The graph of f consists of three line segments and is shown in the figure above.
d) The function p is defined by $p(x)=f\left(x^{2}-x\right)$. Find the slope of the line tangent to the graph of p at the point where $\mathrm{x}=2$.

Graph of f
13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
A) a
B) b
C) c
D) d
E) e

Graph of f
76. The graph of the function f is shown above. Which of the following statements must not be true.
A) $f(a)$ exists
B) $\mathrm{f}(\mathrm{x})$ is defined for $0<\mathrm{x}<\mathrm{a}$
C) f is not continuous at $\mathrm{x}=\mathrm{a}$
D) $\lim _{x \rightarrow a} f(x)$ exists
E) $\lim _{x \rightarrow a} f^{\prime}(x)$ exists

Let f be a differentiable function such that $f(2)=5, f(6)=-3, f^{\prime}(2)=7$ and $\boldsymbol{\%}^{\prime}(6)=-9$. The function g is differentiable and $g(x)=f^{-1}(x)(x)$ for all x.

What is the value of $\mathrm{g}^{\prime}(-3)$?

